
Software agents in support of scheduling group
training

Giorgi Mamatsashvili1, Konrad Gancarz1, Weronika Lajewska1, Maria
Ganzha2, and Marcin Paprzycki3

1 Faculty of Mathematics and Information Sciences, Warsaw University of
Technology, Warsaw, Poland

2 Systems Research Institute, Polish Academy of Sciences, Warsaw, Poland
3 Faculty of Management and Technical Sciences, Warsaw Management Academy,

Warsaw, Poland

Abstract. Nowadays, being fit is becoming more and more popular.
This includes eating habits – with, for instance, companies offering per-
sonalized box-diets – as well as exercising. Obviously, one can go to a
fitness club alone, but it is much more fun to go together with friends.
Here, it should be obvious that reaching an agreement, between two per-
sons, on the time and location of a fitness club, may be relatively easy.
However, it becomes more complex with each additional person that
would like to join the group. The aim of this contribution is to show how
an agent-based application can be used to negotiate schedule of group
training sessions. As a matter of fact, it will be shown that, under a li-
mited number of “good-will assumptions”, the proposed application can
fully eliminate human involvement in the scheduling process, as it can
find the best suitable place and time for a training session, considering
individual preferences.

Keywords: Software agents · scheduling · individual preferences.

1 Introduction

The idea of scheduling something, as straightforward as a training session, isn’t
very complicated. Therefore, one may question the need for a “software support”
in a seemingly trivial task. As long as one has a training place, time for said
physical activity, and a means to arrive there, there isn’t much work to be done.
However, with fitness becoming so popular, forming groups to exercise together
becomes more and more popular as well. Hence, the real problem arises when
the number of potential participants increases. Finding an appropriate time and
place to train becomes exponentially difficult with every new member interested
in joining the group. This can be the case, due to multiple reasons. In modern
days, most people have multiple things, “to which they must attend”. Moreover,
these events are, often, daily occurrences. From educational institutes to jobs,
whether it’s a typical nine to five job, or something with a more unorthodox
schedule, it is highly unlikely that ones personal schedule matches well with

2 G. Mamatsashvili, et al.

schedules of friends, with whom (s)he may want to work out. This does not even
include situations that occur unexpectedly.

This trend has contributed to the rise in popularity of scheduling applica-
tions such as Doodle or Appointy. To schedule an event “is first and foremost
about finding a date and/or time. Doodle supports this by recognizing times
and time spans, when creating a poll and by calendar import/export features,
time zones, etc. when participating in one” [1]. Although Doodle allows users to
vote on presented options, it does not account for preferences each user might
have, nor does it have the important information about the user, or the event.
Instead, it leaves the user no choice but to do the research her(him)self. Appointy
([2]), is a more business-oriented application, which allows users to schedule and
to accept appointments with ease. It also offers many other services, such as
sending reminders through email or SMS and its integration with social media
makes it a very flexible tool. However, similarly to Doodle, it is not designed for
unpredictable scenarios, and it does not have the “intelligence” to carry out the
decision for the user.

Here, let us note, that people have different preferences, e.g. time of the
day when they would like to exercise, or whether the place should carry a late-
evening football broadcasts. Attempting at satisfying such preferences can lead
to direct conflicts. The aforementioned applications, and many similar ones, try
to resolve these problems by having a vote – where individual preferences can
be “represented through casting a vote”. Hence, they try to reach consensus by
using a “democratic approach”. However, they require that users actively take
place in “negotiations” (at least, by actually placing a vote). Here, let us note
that daily schedules are more chaotic than well-structured (unlike meetings in
a business environment), which can make involvement of democracy somewhat
tedious and inefficient, when the number of preferences to be taken into account
increases. The question thus arises – is it possible to reduce, if not eliminate,
direct human participation in scheduling fitness session for a group of friends?
The aim of our work was to show that this can be done (at least to some extent).
Specifically, with enough preferences given, the proposed approach is expected
to arrive at a conclusion that can be interpreted as a compromise between the
preferences of various people without leaving anyone too upset.

Let us now assume that the main use case that we are interested in, is as
follows. A group of “busy friends” likes to exercise together. As many people
today, they live their lives “according to a calendaring application”. In other
words, we assume that, outside of extraordinary circumstances, all of their up-
coming appointments / meetings are stored in such an application. However, we
do not assume that the same calendaring application has to be used by each of
them. Separately, we assume that they agree to trust the fitness scheduling ap-
plication (that we describe in what follows). In other words, they let it facilitate
group negotiations and specify place and time of an upcoming fitness session.
More specifically, let us imagine that a group of three friends decides to have a
training session together. They all work from Monday to Friday until 4 p.m., and
one of them has a boxing session every Tuesday evening. Then, the program will

Software agents in support of scheduling group training 3

try to book a session sometime after 4 p.m. on Monday, Wednesday, Thursday
or Friday as, obviously, one of the members will not be able to join on Tuesday,
due to the boxing class. Here, the exact time is to be decided by finding one
matching preferred training time of all users. Moreover, if the application fails
to find a suitable time during the week, in a more trivial case, it will attempt
to book a training session during the weekend when the users, most-likely, have
more free time.

Because of the nature of the problem, software agents seem to be the pre-
ferable resolution. Here, note that, according to classical references (e.g. [3, 4])
software agents are very good in negotiating and re-negotiating contracts / sche-
dules / agreements / etc. Furthermore, they can act independently [5], while
representing their “owners”. Our work is meant to illustrate, in the specific con-
text, usability of software agents in finding consensus, while solving a, relatively
simple, scheduling problem. Here, agents representing users need to be provided
with the needed information (representing user preferences), and then they will
communicate to establish the “consensus representing place and time”. Further-
more, it is assumed that if any of the preferences change, agents will adapt to
the situation, and renegotiate the schedule, to reach the desirable outcome.

To this effect we proceed as follows. In Section 2, we summarize some related
work. We follow, in Section 3 with outline of the proposed approach. Next, in
Section 4 we show how the implemented application works to solve the, above
outlined, problem.

2 Related work

Agents are very versatile and can have many different applications. They can
be trusted with different tasks, if they’re configured properly and have enough
information, based on which they can represent interests of the user. If an agent
has enough information, it can be expected to make a decision that is very
similar to the one that would be made by the person it represents. Agents, of
course, don’t necessarily have to represent people; given enough data, they will
make choices that are appropriate in the given scenario [6]. Due to this fact,
agents are often tasked with decision-making [7]. In this context, due to their
independence and adaptiveness, they are capable of helping with the scheduling
and rescheduling of certain events.

It is not an uncommon practice to use agents for scheduling [8]. Agents are
expected not only to formulate the original schedule, but also to adapt to the
changes, depending on what information is available to them, reevaluate the si-
tuation, and adjust the schedule based on the newly obtained data. For example,
system mentioned in [9] is used by Taxi companies for real-time vehicle schedu-
ling. Multiagent system, developed by Magenta Corporation for Addison Lee, is
one of many examples of this specific type of application for agent systems, in
the real world. As stated in the document, with the advancements of the modern
age, transportation networks have grown exponentially. The growth was accom-
panied by its difficulties, new problems that required new solutions. Industry

4 G. Mamatsashvili, et al.

giants such as DHL, UPS, TNT, DPD, and many others, have very large and
complex networks, which the enterprise resource planning systems that are in
use cannot handle well. This is particularly the case when response is needed
to dynamically changing situations. The article claims, that the systems have
failed to be very efficient due to the fact, that they’ve failed to keep up with the
ever-evolving technological world and stuck to their older technologies. Solutions
to these problems are outdated and limited. Multiagent systems can provide so-
lutions to the problems that may arise with networks such as these. In the case
of taxi companies, an agent can consider an order of a taxi at a specific time with
a specific request. For example, a group of 7 people with luggage may not fit in
a normal taxi car, and the current city traffic might make it difficult for certain
drivers to reach the customer. The handling the order will need to consider all
these requirements and match the customer with the most appropriate driver.
This can be done by comparing what information the agent holds, concerning
both the customer and the driver (and his vehicle). The solution to the problem
is very practical as it can help save many resources for the company as well as it
is scalable, which can make the concept future-proof in the commercial world.

As mentioned before, the multi-agent system solutions appear in multiple
contexts of scheduling. For instance, HOLOS multi-agent scheduling system is
discussed in [8]. HOLOS was designed specifically for manufacturing enterpri-
ses. The system works by configuring a group of agents for a specific shop floor.
These agents are tasked with exchanging information about the relative pro-
duction orders; this information is used by the system to generate schedules.
What is interesting about this technology, is that the scheduling system is deri-
ved from HOLOS-GA, is not fully automated, but rather semi-automated. Due
to many challenges in the field of manufacturing, the system is interactive, it is
implemented to assist the expert by automating most of the steps of the HOLOS
methodology used by the system. This allows enterprises to tailor the system to
their specific needs. Although, the system does not aim to eliminate the human
involvement in the scheduling process, it still does a great deal of minimizing
the amount of work an expert needs to do, which in turn can be both time and
resource efficient.

In [10], problems that manufacturing enterprises have faced as the world
moves, more and more, towards a global economy are discussed. Due to the
high competition in the field, for the enterprises to survive, they have to be
flexible and agile. Similar to what was described in [9], many existing systems
are outdated and can no longer be considered efficient. They lack many features
a modern market requires such as flexibility and re-configurability. Although
the systems are explicitly build to optimize production, they fail to respond
to change. For that exact reason, the author suggests usage of software agents
in the world of manufacturing. Agents are completely autonomous and can be
tasked with dealing with the ever changing demands of the industry [11]. Their
intelligence, paired with independence, can create an system that is resource-
efficient. The author shows an example of an architecture that looks as follows.
The agent tasked with supervision of the process, queries for an available agents

Software agents in support of scheduling group training 5

that represent factory resources. The supervisor agent looks for an agent who
possesses the skill that is required to complete the task. Here, each and every
resource agent has to verify its skills and answer whether or not they’re capable
of performing the task. In the specific example given in the paper, we have agent
#1 refusing to do the task as it is out of service, and agent #2 being unable
to accept the task as it is overloaded. The task, then, is given to agent #3 who
needs to negotiate process of transportation with the agent that is tasked with
transportation. In this paper, we can see an example of an multi-agent based
infrastructure which schedules and negotiates tasks in a business environment.
This system can help with the full automation of the tasks and doesn’t require
any human-involvement.

All these papers, have not only confirmed correctness of our decision to use
software agents, but also provided valuable insights to the system that we have
undertaken to develop.

3 Proposed approach

Taking into account what has been discussed thus far, let us now outline the
proposed approach. We will start form the requirements for the considered ap-
plication.

3.1 Top-level requirements and architecture

As indicated above, we propose an agent-based architecture, in which each user
will have a personal agent representing her/his interests. Moreover, each user will
have all of her/his upcoming appointments / meetings / commitments stored in
a calendaring application. In this way the proposed system will be able to know
when the user is busy, and thus unable to exercise. Since we plan to use software
agents, each user can easily use a different calendaring application. Each of them
will be interfaced with her/his personal agent. In this way, while the calendaring
applications will differ, personal agents, which belong to the same agent platform,
will be able to communicate and negotiate meeting time.

When the system is initialized (for the first time), after authenticating, users
will be presented with a user interface where they will be able to specify their
preferences. The interface will be split into two main sections, concerning time
and the place (the gym). In each of these sections, user will be able to specify
her/his ideal training preferences, so that the program will attempt to schedule
a training session that isn’t too different from them. The first section, concer-
ning time, will ask for preferred training hours and duration of the session. The
second section will focus on the gym itself. The user will have to specify what
is important in the gym; e.g. what “equipment” is necessary for them for their
workout. They will be also able to suggest what they’d want to see in a gym
(e.g. TV’s). Each agent will store this information and use it in the negotiations.
This information will be stored within the application, for future use, and will

6 G. Mamatsashvili, et al.

be editable (in case if the preferences change). For a depiction of the interface,
see figure 1.

In the system, one of personal agents will be acting as group leader agent.
Group leader is the personal agent that starts negotiations, and knows which
other personal agents are to be involved in them. It represents a person who is
“organizing the training session”. This person (her/his agent) is the one that
starts the “scheduling process”. The role of group leader can be assumed by any
personal agent.

Negotiations are to be orchestrated by a separate agent. We will refer to it
as the central agent. The negotiation process starts when the group leader agent
instance is created by one of the users. This user also states who else should
be in the group that will go out. This will result in instantiation of personal
agents representing each user. The personal agents, after their creation, send,
as a message, “their” preferences (retrieved from the preference repository) to
the central agent. The central agent receives preferences from all personal agents
representing users that are expected to exercise together. It also knows, from the
group leader, how many / which personal agents are to send such preferences.
The central agent waits for a limited time (which is a parameter of the system)
for preferences to arrive. In case when some agents do not send preferences (e.g.
when they are placed within mobile devices that are turned off / not connected
to the Internet) in time, they are eliminated from the pool and will not take part
in scheduling.

Afterwards, the central agent will make decision, based on received prefe-
rences and sends messages back to the personal agentss so that they can add
the event to calendars of their users. The decision the central agent makes, is to
represent a compromise between what all the users want. The decision making
process is described in some detail in sections 3.2.2 and 3.2.1.

3.2 Technical aspects

Let us now briefly describe key technical aspects of the developed application. Let
us start from the way of dealing with time and activities stored in a calendaring
application. Here, the schedule of the user has to be extracted from her/his
calendar. As mentioned, thanks to use of agent infrastructure, we can “hide”
calendaring applications behind personal agents, which have to “know” how to
interface with their calendars. However, for the initial prototype we have selected
the Google Calendar. Hence, we access user data using the Google Calendar
API [12]. Note that, in case of other calendaring applications, we would use
their respective interfaces. For instance One Calendar [13], Fantastical 2 [14],
Lightning [15] (and many others) provide interfaces that allow easy integration
with external software. In our program, we use the following method, which
facilitates access all the user-events, in a specified time period (period that is
pertinent to scheduling joint exercise).

pub l i c L i s t<Event> getEventsBetween (
DateTime from , DateTime to , S t r ing use r Id)
throws IOException {

CalendarConsumer consumer = (entry , ca lendar , r e s u l t s)

Software agents in support of scheduling group training 7

−> {Events events = ca lendar . events ()
. l i s t (entry . ge t Id ())
. s e tDe fau l tBetweenCr i t e r i a (from , to) . execute () ;

r e s u l t s . addAll (events . getItems ()) ;
} ;
r e turn abstractGet (consumer , use r Id) ;

}

Obviously, data can be read only after the user gives the program permission
to access her/his calendar data. This method utilizes Google Calendar API to
fetch the events from the user’s calendar. More specifically, we are explicitly
interested in the upcoming week, when the program will attempts at scheduling
a session and needs to know exactly what events the user might have within this
time frame. We have limited our time-horizon to only one week as the purpose
of the program is to attempt to find free time for a training session in the “near
future”. As it can be seen in the code snippet, it is possible to fetch events from
the user’s calendar from any specified time period. Although, the program, in
its current form, is interested in the upcoming week only, this method is flexible
enough to support different needs and ideas concerning calendar access.

Once the application has access to the events from the calendar, it is time for
the agents communicate. In our application, we have selected JADE (Java Agent
Development Framework), developed by Telecom Italia. JADE is considered to
be one of the most advanced open source agent frameworks available. Apart
from agent abstraction, JADE provides powerful task execution, peer to peer
agent communication via asynchronous messages and many other features [16].
With the help of JADE, we start by creating the central agent, tasked with
collecting users preferences. The central agent is the first agent created during
the scheduling process. To create the agent, a createNewAgent method, found
in the AgentController interface is called. When the agent has started, its state
transitions from “INITIATED” to “ACTIVE”, and the controller is returned.
This method is used to create every agent in the application. For every user,
a personal agent is created. When one of the users is ready to start forming a
group, its agent becomes a group leader and invites selected personal agents to
participate in training scheduling. It also informs the central agent, which agents
are in the group that is to be formed.

While this may seem somewhat strange, as one could suggest that the group
leader should be the one to play the role of central agent, this approach was not
selected. Here, this would mean that each personal agent would have to have
code for schedule negotiations. Furthermore, each one of then could have had
“access” to other persons calendars (via messages that it would receive from the
other personal agents). The latter is a very dubious choice (from the privacy
perspective); even if the access would be only to a limited data-set. On the other
hand, running a central agent in a secure and trusted environment and assuring
users that their data will be deleted after being used, is more palatable.

Here, we also have to distinguish between the current application setup, ap-
plied in the initial prototype, and the way that the program would have worked
in real-life mobile scenario. Currently, all agents are created within a compu-

8 G. Mamatsashvili, et al.

ter that emulates multi-user application. This was done to test the basic logic of
preference representation, calendaring application access and, finally, the process
of scheduling. In the case when the application was to run in a mobile world,
agents would have been instantiated on smart phones (mobile devices, in gene-
ral). This can be done, as in the most recent version of JADE it is possible to
instantiate separate platforms on mobile devices and facilitate their communi-
cation. Hence, while currently running only a limited emulation, choice of agent
platform assures that real-world deployment is possible.

Personal agents provide the central agent with preferences of users they
represent. To store user preferences, we use JpaRespository [17]. With the help
of H2 database [?], we can persist the data in a local file stored on the machine (in
the case of a mobile application, each agent would store data in a local instance
of the database). Pertinent user preferences (we assume that there may be user
preferences that are not related to a given scheduling session) are extracted form
the database, and turned into string (by software called by the personal agent).
If the agent fails to start for whatever reason, the error is logged. Next an ACL
REQUEST message (see, [18]) is sent to the central agent. This message contains
user preferences (in JSON format).

When initiated, the central agent starts and is continuously, through Cy-
clicBehaviour, waiting for messages from personal agents. For each REQUEST
message, it tries to extract its content (with errors being logged). Once all ex-
pected messages are received (or the time-out happens), preferences extracted
form JSON content are stored as objects and the scheduling algorithm is called.
Let us now consider, in some detail, the way that user preferences are taken into
account.

3.2.1 Gym Preferences Initially, during the selection process, the program
tries to select the gym, based on user preferences. All gyms are stored in the
application as objects and the information regarding them are stored as fields.
Specifically, this is a single list, which is constant. Although this isn’t an effi-
cient way of providing the application with information about gyms, this is a
temporary solution. For the time being, data is simply mocked, while in the
future stages, we could expect different solutions to the problem, such as a da-
tabase containing all the necessary information about gyms. In the latter case,
a separate interface to add / remove / modify gym information (manually or by
extracting information from the Web) would have to be provided.

During the gym selection process, based on user preferences, which are repre-
sented in form of weighs, gyms are scored depending on what they have to offer.
There’s a minimum amount of points that is required to score by a given gym,
for it to be considered further. This is a system parameter and it allows to reduce
the number of gyms that are going to be taken into account. Currently, if any of
the gyms scores below two points for any user, it will no longer be considered by
the algorithm regardless of how high it’s score by other users might be. Currently
available preferences can be seen on the right side in figure 1. Each preference is
worth a specific number of points depending on their importance (again, a sy-

Software agents in support of scheduling group training 9

stem parameter that can be adjusted). In the current version, the user is unable
to express the importance of each preference and, instead, they are hardcoded
in the program (obviously, this is only a temporary limitation to simplify the
prototype). To determine the score of the gym, the program checks whether or
not the gym can offer what the user is looking for (expressed in preferences). For
every preference the gym can satisfy, the number of points that this preference
was worth is added to the gym score, which is initially zero. Eventually, all the
individual scored are summed up and the gym with the highest overall score is
chosen. Currently, all the gyms. along with the information regarding them, are
also hardcoded in the program. This is subject to change as the program evolves.

3.2.2 Time Preferences Afterwards, the algorithm for the time selection
begins. Firstly, all available times, during the upcoming week, are extracted
from the calendar. After acquiring such data, the algorithm starts working to
find the shared free time. For each user, the algorithm focuses on the preferred
starting time of the workout and the preferred ending time of the workout. This
is taken from the user inputs “Workout start lower bound” and “Workout start
upper bound” that can be seen in figure 1.

The algorithm then tries to choose a time for the workout from the shared
preferred hours it just obtained, and if the chosen time happens to be available
in all users’ schedules, the session can be scheduled. In other words, the program
will only attempt to schedule the session in the shared preferred time. This
way, the chance of the session ending up scheduled either too early or too late
is eliminated. From this time interval, the program checks different hours and
compares it to the calendars of the users. If the program can find a time period
where every user is free, then it will select that time for scheduling. In summary,
the program ends up booking the session at a time which is relatively close to
every user’s preference. Hence, it can be claimed that it arrives at a compromise.

Afterwards, the central agent sends the message with performative AGREE,
meaning it has agreed to do the request, to personal agents and it will send back
time of the training session as a content of the message. In the final step, each
personal agent calls a method, which adds the event to the calendar of the its,
respective, user.

4 Experimental verification

We have implemented the initial prototype of the proposed application and tes-
ted it on a number of scenarios. As noted, the application has been run on a
single computer, to test the main mechanisms (data representation, access, com-
munication, etc.). Furthermore, a number of aspects of preference representation
have been hard-coded to simplify the prototype. Here, let us report on two basic
use cases. First, what happens when we try to schedule a simple training session
and, second, what will happen when a problem occurs.

10 G. Mamatsashvili, et al.

4.1 Successful training session scheduling

In figure 1, we can see how the preference selection looks like. The preferences
concerning time occupy the left half of the interface, while the ones concerning
the gym can be seen on the right. The preferences shown in the picture are
used as an example and are likely to be adjusted, as the application is being
further developed. In the presented scenario, we have two users looking to book
a training session (which is much easier to describe in a legible way). However,
we have tested the code for multiple users, as well.

Each user sets up a their preferences for the program. The first user chooses
squat rack, yoga room and beactive membership support, as the gym preferences.
The second user chooses squat rack and power bikes. All the gyms that are stored
(hard-coded) in the application are considered. Here, three gyms that stand out
the most and they are “Ancient”, ”Olympus” and “Palace”, since the three of
them satisfy more of the user-specified preferences than others. Olympus offers
squat rack and a yoga room, and even supports the beactive membership, which
leaves it with a score of 6 for the first user, and a score of 3 for the second
user, therefore the overall score of the Olympus is 9. Palace, on the other hand,
does not have a yoga room, but instead has a room with power bikes, which
leaves it with an overall score of 9. Ancient offers everything users specified
in their preferences and with the overall score of 10, it is chosen. It is worth
noting that upcoming schedules of both users are relatively free, which gives the
program a lot of different possibilities, as to when the training session can be
scheduled. The program always chooses time period that is the closest to the
“current moment”. In this particular case, in figure 2, we can see the upcoming
gym event added from 18:00 to 20:00 as both involved users had set 2 hours
as a preferred training duration. The fact that the session will be held in the
“Ancient” gym is also included in the description of the event.

4.2 Scheduling failure

Recall that the program makes a decision based on what can be found in user’s
calendars. If we have a scenario where one or more users’ schedule is full, the
program may fail to schedule a training session. Unfortunately, the program
cannot take care of such a problem as it tries to consider schedules of all the
users, and every time period where there is an event scheduled automatically gets
disqualified and will not be used for scheduling the training session. Although
a possibility of something like this happening isn’t very high, it becomes more
likely as the groups get bigger.

Let us show a specific example and see how the failure is illustrated. In
this experiment, we will, once again, have two users attempt to book a training
schedule. The first user specifies that the time he’s willing to workout is from
9:00 to 12:00, while the second user’s choice is from 13:00 to 18:00. Since there
is absolutely no overlapping between the two preferences, the program fails to
schedule an event and the error is logged.

2018−10−21 1 9 : 3 2 : 5 6 . 6 1 8 ERROR 10896 −−−

Software agents in support of scheduling group training 11

Fig. 1. Example of an user going through their setup

Fig. 2. The program is done scheduling the session, and the event is added to the
calendars of the users

12 G. Mamatsashvili, et al.

[c e n t r a l] p . g . jacked . s e r v i c e s . Ca lendarServ i ce :
Schedul ing Fa i l u r e − Free time not found

The central agent sends back the message of performative FAILURE to indivi-
dual agents to notify them, that the action failed.

Note that for a group of, let us say, 9 people with busy schedules, it is possible
for them not to have an overlapping time period when they all happen to be free
in the upcoming week. Moreover, users may not be willing to wait an entire week
for the workout. Here a number of scenarios is possible. (1) Program may fail
and report this to the users (via their personal agentss). In this case, which is the
one currently implemented, it is advised that the program is only used by small
groups of people, no more than 3 or 4 persons in each group. This way, we can
maximize the chance of a desirable outcome. (2) Program may try to eliminate
the most “problematic user(s)” and schedule the largest number of them during
the closest time. Here, a multicriterial decision making process is needed. In this
process number of people that can exercise together will be considered vis-a-vis
other criteria. We plan to investigate this approach in the near future.

Overall, it should also be noted that the decision carried out by the program
isn’t perfect. The application considers preferences of all users, which might
cause it to make a decision that is more likable to some than others. This will
depend entirely on the algorithm in place.

5 Concluding remarks

In this work we have considered use of software agent infrastructure to schedule
group exercises in a gym. Based on requirements analysis we have implemented
an initial prototype and tested it in a number of scenarios. The developed ap-
plication schedules a training session based on the needs and availability of the
user. If the user is willing to trust the decision-making process of the program,
then the human involvement can be minimized, when trying to find time for
joint activities.

In the text, above, we have indicated a number of immediate shortcomings
of the developed prototype. These will be dealt with, first. Furthermore, in order
to achieve better quality of scheduling, it is planned to perform an additional
research concerning what is available in gyms and what can / should be repre-
sented in user preferences. Moreover, possibilities of, for instance: (1) migrating
the application to mobile devices, (2) integrating with personal assistants like
Alexa, Cortana or Google Assistant, (3) avoiding scheduling a session at a spe-
cific time period due to blacklisted events (see, [19]), (4) use of ontologies to
represent gyms and user preferences, and semantic technologies, in general, (5)
inclusion of diet control, are going to be considered to develop a complete fitness
assistant. We will report on our progress in subsequent publications.

Software agents in support of scheduling group training 13

References

1. Doodle. https://help.doodle.com/customer/portal/articles/645363. Acces-
sed: 2018-09-24.

2. Appointy. https://www.appointy.com. Accessed: 2018-09-24.
3. Alex L. G. Hayzelden and John Bigham. Software Agents for Future Communica-

tion Systems. Springer-Verlag Berlin Heidelberg, 1999.
4. Michael N Huhns and Munindar P Singh. Readings in Agents. Morgan Kaufmann,

1998.
5. Frank L. Lewis, Hongwei Zhang, Kristian Hengster-Movric, and Abhijit Das.

Cooperative Control of Multi-Agent Systems: Optimal and Adaptive Design Ap-
proaches. Springer-Verlag London, 2014.

6. Kornelije Rabuzin, Mirko Malekovic, and Miroslav Baca. A survey of the properties
of agents, Dec 2005.

7. Yanqing Duan, Vincent Koon Ong, Mark Xu, and Brian Mathews. Supporting
decision making process with “ideal” software agents – what do business executives
want? Expert Systems with Applications, 39(5):5534 – 5547, 2012.

8. R.J. Rabelo, L.M. Camarinha-Matos, and H. Afsarmanesh. Multi-agent-based agile
scheduling. Robotics and Autonomous Systems, 1999.

9. Andrey Glaschenko, Anton Ivaschenko, George Rzevski, and Petr Skobelev. Multi-
agent real time scheduling system for taxi companies. In Proceedings of The 8th
International Conference on Autonomous Agents and Multiagent Systems, pages
29–36, May 2009.

10. Virendra Kumar Verma. Multi-agent based scheduling in manufacturing system. In
National Conference on Futuristic Approaches in Civil & Mechanical Engineering,
March 2015.

11. Paulo Leitao and Stamatis Karnouskos. Industrial Agents: Emerging Applications
of Software Agents in Industry. Elsevier, 2015.

12. Google Calendar API. https://developers.google.com/calendar/. Accessed:
2018-09-02.

13. OneCalendar. https://www.onecalendar.nl/onecalendar/overview. Accessed:
2018-10-29.

14. Fantastical 2. https://flexibits.com/fantastical. Accessed: 2018-10-29.
15. Lightning Calendar. https://www.thunderbird.net/en-US/calendar/. Accessed:

2018-10-29.
16. JADE: Java agent development framework. http://jade.tilab.com/. Accessed:

2018-09-05.
17. JPA repository. https://docs.spring.io/spring-data/jpa/docs/current/api/

org/springframework/data/jpa/repository/JpaRepository.html. Accessed:
2018-11-05.

18. FIPA Peformatives. http://jmvidal.cse.sc.edu/talks/agentcommunication/

performatives.html?style=White. Accessed: 2018-09-05.
19. Wordnet Database. https://wordnet.princeton.edu/. Accessed: 2018-09-24.

